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SUMMARY 
Recently, a rigorous a posteriori error estimate, based on the element residual method, for the steady-state 
Navier-Stokes equations has been derived. In this paper, by using this error estimate, we construct an h p  
adaptive strategy to minimize the total computation costs while achieving a targeted accuracy for steady 
incompressible viscous flow problems. The basic h p  adaptive strategy is to solve the approximate problem in 
three consecutive stages corresponding to three different meshes, i.e. an initial mesh, an intermediate 
adaptive h-mesh, and a final adaptive h p  mesh. Our numerical result shows that the three-step h p  adaptive 
strategy for the incompressible flow problems indeed provides an accurate approximate solution while 
keeping the computational costs under control. 
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1. INTRODUCTION 

The goal of hp adaptive finite element methods is to obtain an accurate approximate solution 
within a preset error tolerance at the least possible computational cost, mainly measured in terms 
of the total CPU time and the total computer memory used. There are two major questions that 
must be resolved in order to reach this goal. One is how to estimate the accuracy of approximate 
solutions when exact solutions are not available; the other concerns the control of computational 
costs to obtain the user-specified error tolerance. The issue of estimating the error of approximate 
solution for the steady-state Navier-Stokes equations is discussed in',2 while the issue of 
designing an hp adaptive strategy3 is considered here. 

To control computational costs, one needs to develop an efficient h p  adaptive strategy for 
obtaining near-optimal adaptive hp meshes. The payoff can be considerable: exponential rates of 
convergence with respect to the computed error can be achieved by using very few degrees of 
freedom, and this translates into meshes which deliver targeted accuracies with many fewer 
degrees of freedom than traditional h- or p-version methods. On the other hand, the total 
computational overhead in an unplanned adaptive h p  strategy can conceivably be greater than 
the cost for conventional uniform h or p methods. To overcome this potential complication, 
a prudently designed adaptive strategy is required. 

The research in the design of efficient adaptive strategies is still in early stages. The first general 
hp adaptive strategy was proposed by Rachowicz et aL4 in 1989, which involved a scheme 
requiring many steps of solving linear system for different stages of mesh in order to achieve an 
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optimal mesh. Recently Oden et aL3 developed an efficient three-step h p  adaptive strategy in 
which employs only three stages corresponding to three different meshes. Initial numerical 
experiments using the three-step h p  adaptive strategy are encouraging when the total CPU time 
needed is compared with those of uniform h or p methods. The current study extends this h p  
adaptive strategy to the steady-state Navier-Stokes flow problem. 

Following this introduction, the Navier-Stokes equations and the basic notations used in this 
paper will be presented in Section 2. The finite element approximations of the Navier-Stokes 
equations is described in Section 3. In Section 4, two major theorems on the a posteriori error 
estimation for steady-state Navier-Stokes equations are given. The three-step h p  adaptive 
strategy is presented in Section 5. Finally, results of numerical experiments are given in Section 6. 

2. THE NAVIER-STOKES EQUATIONS 

The steady-state Navier-Stokes equations on a bounded Lipschitz domain R E  R“, n = 2 or 3, are 
described as follows: 

(u.V)u - V.o(u,p) = f in R 

V . u = O  in51 (1) 

u = O  ondR 

where u = u(x), x = (xl , .  . . , x,)EQ, is the velocity field, and f is the body force. o(u, p), the 
Cauchy stress, is defined as 2vD(u) - p l  with the kinematic viscosity v > 0, strain rate tensor 
D(u) = (Vu + VuT)/2, pressure p ,  and the unit tensor 1. 

To obtain a weak formulation of (l), we introduce the following spaces and norms: 

V = (HA ‘(Q)). 

H = {VE V: div v = 0} 

where dx = dxl dx’.. . dx, with the trilinear, bilinear, and linear forms, 

C: V X  V X  V-+ R, C(U, V, W) = u.Vv.wdx sI1 
r 

a :  V x  V - r  R, a(u, V) = 2vD(u): D(v) dx 
Jn 

b : Q x  V + R ,  b(q,v)= qV.vdx s,, 
f :  V + R, f(v) = sllf. v dx 
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Then the weak formulation of Navier-Stokes equations is 

Find (u, p )  E V x Q such that for all (v, q) E V x Q, 

c(u, u, v) + v) - b(P, v) = f W  
b(q, U) = 0. 

The forms a ( - ; ) ,  b(-;), c(-;;), and f(.) are continuous and b(.;) satisfies infsup condi- 
t i ~ n . ~  Also, we assume that there exists a constant y such that 

the data body force f is defined such that it corresponds to a functional 

fE(H-’)” 
with norm being defined as 

(4) 

Under these conditions, the existence and uniqueness of solutions of (2) are given as follows. 

Theorem 1 .  (i) Under the above dejinitions and conditions, there exists at least one solution 

(ii) If, in addition, 
(u, p )  E V x Q to problem (2). 

II f II * < V 2 h  (6) 

then the solution (u, p )  is unique. 

Prooj See Reference 6. 0 

3. FINITE ELEMENT APPROXIMATIONS 

To develop finite element approximations of (2), we introduce a partition 9 of R into a collection 
of N = N(9) subdomains OK:  

N ( W  - 

K = l  
a =  n Q K , Q K n Q L = O  V K #  L 

We may now write 
N 

a(u, v) = 1 aK(u, v) 
K = l  

a~ (U, V) = (u): D (v) dx, U, v E VK 

N 

b(q, v, = bK(q, v) 
K = l  

bK(q,V)=Jn;v-*dx, qEQK,VEVK 
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etc., with similar definitions for c,(.;;), f K ( . ) ,  where V, = V(Q,)  and QK = ( q E L 2 ( K ) :  
q = p I K ,  p E Q} denote corresponding local spaces of functions in V and Q, respectively, restricted 

Following the standard finite element approaches, let R and .!? be constructed such that each 
subdomain RK is the image of a master element fi under an affine invertible map F K : a  + SZ,, 
1 6 K d N .  If 5 = FK ' (x), x E!&, we approximate test functions v E V K ,  q E Q K  by functions vh 
and qh such that & ( g )  = u: 0 FK ' (x), 1 d i d n, Q(5) = qh 0 FK (x) are polynomials or products of 
polynomials in 5. The resulting spaces of functions have the properties Vk c V,  and Qk c Q K .  

The finite element approximation of (2) obtained using the spaces Vh and Q" is characterized by 
the following discrete problem. 

to RK. 

Find (uh, p " )  E V h  x Q h  such that for every (vh, q h )  E Vh x Qh, 

c(uh, uh, vh) + a(uh, vh) - b(ph, vh) =f(v"), 

b(qh, uh) = 0. 
(7) 

Under proper conditions, one can construct convergent sequences of solutions to (7). See 
Reference 6 for details. Moreover, the following result can be established. 

Theorem 2. Let n d 3 and the conditions of Theorem I hold. Let (u, p )  be the solution of (1). Then, 
for v sujiciently large, there exists an ho such that for all h d ho, (7) has a unique solution 
(uh, p h )  E V h  x Q" and 

h - 0  l im{(u-u"( ,  + I /p-phIIO}=O (8) 

If, in addition, the solution (u, p )  o f ( 3 ) ~ ( H ~ + ' ( Q ) " n  V )  x (Hk(Q) n Q) for k < 8, then a constant 
C > 0 exists, independent of h, such that 

1~ - U h l i  + IIP - phIIo d Chk (9) 
ProoJ See Reference 6, in particular pp. 317-318. 0 

4. THE A POSTERIORI ERROR ESTIMATE FOR THE STEADY-STATE 
NAVIER-STOKES EQUATIONS 

Now we shall construct an a posteriori error estimate for the Navier-Stokes equations. Let (u, p )  
and (uh, p")  be the unique solutions to the problems (1) and (7), respectively. 

Define two bilinear forms as 

and the pair (cp, t,b) E V x Q which are solutions of 

A(cp,v) = a(e,  v) - b(E,  v) + c(u,u, v) - c(uh, uh, v) 
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The existence and uniqueness of the pair (cp, $) in (1  1) follows immediately from the definitions 
of A and B in (10). Next we define the ‘star norm’ of error to be 

II(e, E)II: = IcpI2 + 1$102 (12) 
with 

The ‘averaged approximate flux on the boundary rKL is defined as 

(nK.n(uh, ph)> = n K . C ( 1  - aKL(s))cK(uh, p h )  + aKL(s)cL(uh9 p h ) I  (14) 
 IS^ is the Cauchy stress in 52, at s E rKL and nL is that in neighboring element f i L  at s. Thus, (14) 
defines a linear combination of approximate boundary fluxes on the interelement boundary. Note 
that if we take aKL = 3, (14) reduces to a simple average of fluxes. We shall assume hereafter that 
the parameter functions aKL are constructed in such a way that the element residual and 
boundary residuals are balanced in the sense of References 7, 8, i.e. the residual fluxes are 
equilibrated. 

The following theorem confirms that the star norm defined in (12) is actually equivalent to the 
usual norm used for the Navier-Stokes equation. 

Theorem 3. Let the conditions of Theorems 1 and 2 hold for k > 0 and, moreover, there exists 
a constant L such that 

lull 9 L < V I Y  

kl II(e, E)Ili Q 14: + IIElI,2 Q k2 I l k  E)lIi 

(15) 
Then there exists two positive constants kl and k2 such that as h + 0, 

(16) 

where k l  and k 2  are positive constants. 
Proof: See References 1 and 2. 0 

The a posteriori error estimate for the Navier-Stokes equations is as follows. 

Theorem 4. Let assumptions on Theorem 4 hold and A K ( .  , . ) and B K ( .  , . ) denote the element inner 
products corresponding to A ( - ; )  and B(  .;) of (10) and let ( P ~ E  VK denote the solution of the local 
error residual problem, 

(nK.n(uh, p h ) ) . v K  ds 
an,lan 

(17) 
i A K ( c p K ,  v K )  = f K ( v K )  - v K )  + b K ( p k ,  v K )  - c K ( u k ,  uhK, v K )  + 

for every V ~ E  V K ,  1 Q K < N .  Then the error (e, E )  of the Jinite element approximations of the 
Navier-Stokes equations ( 1 )  satisjes the following bound 

Proof: See Reference 1 
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5. THE .THREE-STEP h-p ADAPTIVE STRATEGY 

Here, we employ the three-step scheme introduced in Reference 3 and exploited in Reference 9 
and elsewhere. For completeness, we record its basic properties. The goal of the three-step 
adaptive strategy is to reach a preset target error of the problem and to minimize the computa- 
tional effort required. 

To develop the scheme, we suppose that a global a priori error estimate exists in the star 
norm' ' 

where hK,  pK are, respectively, the size and the spectral order of the element K, vK and p K  depend 
on the regularity of solutions and AK is a local unknown constant. We also define local error 
indicator Q K ,  global error indicator 8 and error index g as 

Now, we introduce several major assumptions. The asymptotic estimate on (19) is treated as an 
equality and the actual error is approximated by the a posteriori error estimate 8. By setting, 
respectively, the unknown exponents p K  and vK to given p, v ,  and then passing to the element level, 
we have the following relation: 

Now, we assign a target error index gtet and we are able to describe the three steps as follows: 

(a) Introduce an initial mesh 9'' with a sufficient number N o  elements such that the approxim- 
ate solution will fall into the asymptotic part of the convergence curve. Solve the problem 
on this mesh and calculate the local a posteriori error indicator 0: on 9'' to estimate the 
error. We then estimate the star norm of the exact solution and the initial error index by 

ll(u, p)Ilf = ll(uo, P ' ) I I :  = Il(uho, ph')ll: + 

Select gin' such that gtgt d gin' 6 go. 
(b) Calculate the number nK of new subelements required in each element of 9" in order to 

obtain a new optimal mesh 9' with N ' elements while achieving the required intermediate 
error index yint. 
Considering an uniform h-refinements on element K of Po, the number of subelements on 
element K can be correlated by nK = (h;/h:)2'a with p = 2/n and n is the dimension of the 
problem. Using (21), we can easily find the following non-linear system which allows us to 
compute n K :  

N Q  
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where the global error IP"' is predicted by qint 1 1  (uo, p o )  I / * .  Having nK, we introduce 
h-refinements on 8' to construct 8'. 
Now, solve the problem on this second mesh and compute the local a posteriori error 
indicators 0;. 

(c) The third mesh P2 is constructed by calculating a distribution of polynomial degrees p K  of 
8' to reach the target error index ?Ipt. From (21), we can calculate the required spectral 
order p K  of 8' to obtain an equally distributed target error on the new mesh by 

where the global error etgt is predicted by qtst ll(u', p')ll*. 
Now, enrich p on each element of 9l to obtain P2. Solve the problem on p2 and compute 
the final error index 1'. If q2 Q qtgt, the computation is terminated; otherwise the whole 
procedure is repeated. 

This technique provides a good compromise between the cost of the adaptivity and the quality of 
the final mesh. In fact, it leads to good (but suboptimal) meshes and exhibits fast convergence 
characteristics with respect to CPU time from our numerical examples. 

6. NUMERICAL RESULTS 

In the following three examples, the initial mesh is selected according to the physical geometry of 
flow problem. The flow is solved by using usual Newton-Raphson iterative solver with continu- 
ous velocity and pressure on elements with spectral order as Q2/Q1 (i.e. biquadratic velocity and 
bilinear pressure), Q3/Q2, Q4J3, Qp/Q(p - 2) for p 2 5. A continuation method is used to reach 
steady-state solution for the initial mesh with initial guess came from the computed solution of 
corresponding Stokes problem; however, for the intermediate and final step, the computed 
solution from the previous mesh is used as an initial guess for the Newton-Raphson solver. For 
each Newton's step, a direct frontal solver is used. 

6.1. Flow over the cavity (Re = 400) 

We consider the problem of the internal flow over the cavity. The Reynolds number is set to be 
400 with characteristic length and velocity based on the inflow channel width and averaged 

4 14 + 1 
1 
- 

1 

t- I- 
T 

6 

Figure 1. Geometry of flow over cavity with Re = 400 



838 J. T. ODEN, W. WU AND V. LEGAT 

inflow velocity. A parabolic inflow and an uniform outflow boundary conditions are used. 
A detailed geometric description is shown in Figure 1. The initial mesh, shown in Figure 2(a), is 
selected, which features some local h and p refinement near the corner to resolve better the 
singularity there. 

The initial mesh has 527 d.0.f.s per component. By setting the intermediate error criterion 
qr and final error criterion qT to be 10 and 3 per cent of the total energy, we obtain the 

MIN=-.M83418 
UAX=.4590524 

Figure 2. (a, b) 
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Figure 2. The initial step: (a) initial mesh; (b) computed pressure; (c) error distribution 

intermediate mesh and final mesh, as shown in Figures 3(a) and 4(a), with degrees of freedom of 
1580 and 1835, respectively. We observe that, in the initial mesh in regions of high error the 
pressure exhibits severe oscillations, (Figures 2(b) and 2(c)) suggesting that the error is dominated 
by a poor satisfaction of the incompressibility condition in these regions. After a first adaptive 

Figure 3. (a) 
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MJN=S79E44 
MAX=.4703712 

ERRORS ESTIMATES 
MIN=O. 144803 
uAXa.284291 

GLOBALs.794285 
D.O.F.=1580 

Figure 3. The intermediate step: (a) intermediate mesh; (b) computed pressure; (c) error distribution 

h-refinement, the oscillation observed from the pressure, Figures 2(b) and 3(b), is under control. 
The second adaptive p-refinement is applied to obtain an approximate solution with an accuracy 
within the target error. We note that it is not necessary to compute the error for each element for 
each step. In practice, one can avoid recalculating the error for the elements with very small 
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841 

D.O.F=1835 

Figure 4. (a-c) 
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I I 1 
15 ?A 

ERRORS ESTUlATES 
MIN4.144E-03 
MAX4.293554 

GLOBAL=.634227 
D.O.F.=1835 

(d) 

Figure 4. The final step: (a) final mesh; (b) computed velocity vector; (c) computed pressure; (d) error distribution 

estimated error after the first step and assume that the error at the later steps is the same as the 
first step. The final velocity vector picture is shown as Figure 4(b). The final pressure, as shown in 
Figure 4(c), provides a good approximation when compared with a separate approximate 
solution obtained by solving the problem on a much finer mesh. 

6.2. Flow over the obstacle (Re = 200) 

Next we consider the flow over an obstacle, as shown in Figure 5, with a Reynolds number of 
200 based on the inflow channel length and averaged inflow velocity. The initial mesh contains 
uniform Q3/Q2 elements, as shown in Figure 6(a). The computed solutions shown in Figures 6(b) 
and 6(c) from the initial mesh are highly oscillatory, which indicates that the initial mesh is too 
coarse to resolve sufficiently the complicated flow characteristics. Conventionally, for this type of 
convection-diffusion problem, there are mainly two approaches to suppress oscillatory phe- 
nomena. One popular approach is to use upwind schemes, e.g. SUPG (streamline upwind 

I?--- 10 4 
/ / / / / / / / / / / / / / / / / / /  J- 1'1 

/ / / / / / / / / / / / /  ?- / / / / / /  

I- 3 4 1 I -  

Figure 5. Geometry of flow over the obstacle with Re = 200 
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D.O.F=805 

huN= 
MAXz2.8567434 
SCALE=.2408585 

Mlli4.836864 
MAX=.6431181 

Figure 6. (a-c) 



844 J. T. ODEN, W. WU AND V. LEGAT 

ERRORS ESTIMATES 
MINS.005728 
MAX=5.66172 I 

GLOBAL= 10.74OO82 
D.O.F.=805 

Figure 6 .  The initial step: (a) initial mesh; (b) computed velocity vector; (c) computed pressure; (d) error distribution 

D.O.F=1243 

Figure 7. (a) 



NAVIER-STOKES EQUATIONS 845 

MLN= 
MAX=2.76864 16 
SCALE.2408585 

Mm=-2.)460% 
MAX=2.57255% 

ERRORS ESTIMATES 
MIN.0.005159 
MAX=2.143984 

GLOBAL6 159681 
D.O.F.=1243 

Figure 7. The intermediate step: (a) intermediate mesh; (b) computed velocity vector; (c) computed pressure; (d) error 
distribution 
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Petrov-Galerkin methods), which involve modifying the space of test functions so that the flow 
on the upstream part of elements are assigned more weight than the downstream part. The other 
approach is simply to refine/enrich the mesh by putting more degrees of freedom on the finite 
element mesh. Here, the adaptive strategy allows us to refine/enrich the mesh appropriately and 
obtain an acceptable solution; moreover, the adaptive process stops only if the user-specified 

1 2 3 4 5 6 7 8 D.O.F=1436 

MIN=-.M37576 
MAX= I .0024687 

(b) 

Figure 8. (a, b) 
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MIN=-2.775708 
MAX=2.67 14406 

i 
, -  

ERRORS ESTIMATES 
MIN=0.W771 
MAX=2.3456S3 

GLOBAL=SSS2734 
D.O.F.= 1436 

Figure 8. The final step: (a) final mesh; (b) computed streamline; (c) computed pressure; (d) error distribution 

error criterion is reached. Following the same adaptive procedure as described previously, we 
obtain the intermediate mesh and its corresponding solutions and estimated error as shown in 
Figure 7. The final solution obtained from the h-p adaptive mesh, is shown in Figure 8; the error 
criterion is met and very little oscillation is observed. 



848 J. T. ODEN, W. WU AND V. LEGAT 

0.51485 

I 

6.3. Backstep channel problems (Re = 400) 

We consider the steady motion of an isothermal incompressible Newtonian fluid. We impose 
no-slip conditions on the walls and a fully developed profile in the entry section. The lengths of 
both channels are, respectively, 2 and 16 lengths of the outflow section. In order to compare our 
results with Reference 11, we select an inflow section equal to 0.51485 and a Reynolds number of 
300. The Reynolds number is based on the average inflow velocity and diameter. The geometry 
features of the problem are defined in Figure 9. 

From an initial mesh of 877 scalar degrees of freedom and a quadratic interpolation, we 
calculate an estimated error index of 0.14. Then, the three-step strategy is used with an intermedi- 
ate error index qint = 0-10 and a target error index of qtgt = 0-08. The final mesh is shown in 
Figure 10. Computed pressure is shown in Figure 11. Close-up views of the three meshes and the 
error index evolution are shown in Figures 12 and 13. It is expected that the elements are 
h-refined near the singularity and that orders of p = 4 and p = 3 are assigned near this point. 
However, the adaptive strategy also leads to refinements and enrichments in other areas. 

16.0 

Figure 9. Geometry for the backstep problem 

Figure 10. Backstep channel problem (Re = 300), Newtonian fluid. Shaded elements reflect non-uniform p-distribution in 
final mesh 
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Figure 11. Backstep channel problem (Re = 300), Newtonian fluid. 3-D plot of the pressure 

Step 1 

q = .1414 

Error Index 

I I  

O.l i 

0.01 

Step 2 

11 = .0938 (0.1) 

I 
Step 3 

q = .075 1 (0.08) 

Figure 12. Backstep channel problem (Re = 300), Newtonian fluid. Close-up views of the 3 adaptive meshes 
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Step 1 

Max=. 15853 Global=.30004 

- -4-- 

0.01 
100 lo00 loo00 

Step 2 

Max=.06162 Global=.19403 

Step 3 

Max=.04195 Global=. 15370 

O M  om 

Figure 13 Backstep channel problem (Re = 300),  Newtonian fluld. Equilibrated estimated error 

Table I. CPU time accounting for the backstep problem 
~ 

CPU for the error estimates 
Mesh CPU for the solution 

(no. of iterations) (4 (0.5) 

go 12246 (21) 1283 866 
gL 3333 (4) 2073 1171 
g2 9264 ( 5 )  3845 2787 
Total 24843 7201 4824 

100% 28 YO 19% 

Table 11. Backstep problem: reattachement lengths 

Reattachement Reference Present 
lengths results' results 

4.96 4.95 
4.05 4.13 
7.55 7.32 



NAVIER-STOKES EQUATIONS 85 1 

In order to illustrate the cost of the adaptive strategy, Table I contains the CPU time used for 
each part of the calculation. The total number of iterations to reach the solution on each mesh 
(relative variation lo-’) is also provided. Table I1 contains results seen to be in excellent 
agreement with the literature. With 1530 scalar degrees of freedoms, values for the reattachement 
lengths are obtained which agree with those calculated with 12870 d.o.f.’s in Reference 11. 
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